top of page
2022:
-
Yang, X., Wang, Y., Zhao, C., Fan, H., Yang, Y., Chi, Y., Shen,L. & Yan, X. (2022). Health risk and disease burden attributable to long-term global fine-mode particles. Chemosphere, 132435.
2021:
-
Yan, X., Zang, Z. Liang, C., Luo, N., Ren, R., Cribb, M., Li, Z.* (2021). New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. Environmental Pollution, 276, 116707.
-
Yan, X., Zang, Z., Zhao, C.*, Husi, L. (2021). Understanding global changes in fine-mode aerosols during 2008–2017 using statistical methods and deep learning approach. Environment International, 149,106392.
-
Yan, X.*,Zang, Z., Jiang, Y., Shi, W., Guo, Y., Li, D., Zhao, C., Husi, L. (2021). A Spatial-Temporal Interpretable Deep Learning Model for Improving Interpretability and Predictive Accuracy of Satellite-based PM2.5. Environmental Pollution,273, 116459.
-
Zang, Z., Guo, Y., Jiang, Y., Zuo, C., Li, D., Shi, W., & Yan, X.*. (2021). Tree-based ensemble deep learning model for spatiotemporal surface ozone (O3) prediction and interpretation. International Journal of Applied Earth Observation and Geoinformation, 103, 102516.
-
Zang, Z., Li, D., Guo, Y., Shi, W., & Yan, X.* (2021). Superior PM2. 5 Estimation by Integrating Aerosol Fine Mode Data from the Himawari-8 Satellite in Deep and Classical Machine Learning Models. Remote Sensing, 13(14), 2779.
-
Yang, X., Zhao, C., Yang, Y., Yan, X., & Fan, H. (2021). Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia. Atmospheric Chemistry and Physics, 21(5), 3833-3853.
2020:
-
Yan, X.,Zang, Z.,Luo, N., Jiang, Y., & Li, Z.*(2020). New Interpretable Deep Learning Model to Monitor Real-Time PM2.5 Concentrations from Satellite Data. Environment International, 144,106060.
-
Yan, X., Liang, C., Jiang, Y., Luo, N., Zang, Z., & Li, Z.* (2020). A Deep Learning Approach to Improve the Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, 58, 8427-8437. doi: 10.1109/TGRS.2020.2987896.
-
Liang, C., Zang, Z., Li, Z., & Yan, X.* (2020). An Improved Global Land Anthropogenic Aerosol Product Based on Satellite Retrievals From 2008 to 2016. IEEE Geoscience and Remote Sensing Letters. doi: 10.1109/LGRS.2020.2991730.
-
Yan, X.*, Luo, N., Liang, C., Zang, Z., Zhao, W., & Shi, W. (2020). Simplified and Fast Atmospheric Radiative Transfer model for satellite-based aerosol optical depth retrieval. Atmospheric Environment, 224, 117362.
-
Yang, X., Zhao, C., Luo, N., Zhao, W., Shi, W., & Yan, X.* (2020). Evaluation and Comparison of Himawari-8 L2 V1. 0, V2. 1 and MODIS C6. 1 aerosol products over Asia and the oceania regions. Atmospheric Environment, 220, 117068.
2013-2019:
-
Yan, X., Li, Z.*, Luo, N., Shi, W., Zhao, W., Yang, X., Liang, C., Zhang, F. & Cribb, M. (2019). An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 2: Application and validation in Asia. Remote Sensing of Environment, 222, 90-103.
-
Nana Luo, Wenzhong Shi, Chen Liang, Zhengqiang Li, Haofei Wang, Wenji Zhao, Yingjie Zhang, Yuying Wang, Zhanqing Li, Xing Yan* (2019). Characteristics of atmospheric fungi in particle growth events along with new particle formation in the central North China Plain, Science of The Total Environment, 683, 389-398.
-
Yang, X., Jiang, L., Zhao, W.*, Xiong, Q., Zhao, W., & Yan, X*. (2018). Comparison of Ground-Based PM2. 5 and PM10 Concentrations in China, India, and the US. International journal of environmental research and public health, 15(7), 1382.
-
Yan, X., Li, Z.*, Luo, N., Shi, W., Zhao, W., Yang, X., & Jin, J. (2018). A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmospheric Research, 207, 14-27.
-
Yan, X., Li, Z.*, Shi, W., Luo, N., Wu, T., & Zhao, W. (2017). An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness, part 1: algorithm development. Remote Sensing of Environment, 192, 87-97.
-
Yan, X., Shi, W. *, Li, Z. *, Li, Z., Luo, N., & Zhao, W., et al. (2017). Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China. Atmospheric Environment, 170, 290-302.
-
Ou, Y., Chen, F., Zhao, W., Yan, X., & Zhang, Q. (2017). Landsat 8-based inversion methods for aerosol optical depths in the Beijing area. Atmospheric Pollution Research, 8(2), 267-274.
-
Yan, X., Shi, W.*, Luo, N., & Zhao, W. (2016). A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products. Atmospheric Research, 171, 31-40.
-
Luo, N., An, L., Nara, A., Yan, X., & Zhao, W. (2016). GIS-based multielement source analysis of dustfall in Beijing: A study of 40 major and trace elements. Chemosphere, 152, 123-131.
-
Wang, H. F., Fang, N., Yan, X., Chen, F. T., Xiong, Q. L., & Zhao, W. J. (2016). Retrieving dustfall distribution in beijing city based on ground spectral data and remote sensing. Spectroscopy and Spectral Analysis, 36:2911-2918.
-
Zheng, X., Guo, X., Zhao, W., Shu, T., Xin, Y., Yan, X., Xiong, Q., Chan, F. & Lv, M. (2016). Spatial variation and provenance of atmospheric trace elemental deposition in Beijing. Atmospheric Pollution Research, 7(2), 260-267.
-
Yan, X., Shi, W.*, Zhao, W., & Luo, N. (2015). Mapping dustfall distribution in urban areas using remote sensing and ground spectral data. Science of the Total Environment, 506, 604-612.
-
Zheng, X., Zhao, W., Yan, X., Shu, T., Xiong, Q., & Chen, F. (2015). Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. International journal of environmental research and public health, 12(8), 9658-9671.
-
Luo, N., Wong, M. S., Zhao, W., Yan, X., & Xiao, F. (2015). Improved aerosol retrieval algorithm using Landsat images and its application for PM10 monitoring over urban areas. Atmospheric Research, 153, 264-275.
-
Chen, F. T., Zhao, W. J., & Yan, X. (2015). The study based on rectification of vegetation indices with dust impact. Spectroscopy and Spectral Analysis, 35(10), 2830-2835.
-
Yan, X., Shi, W. Z.*, Zhao, W. J.*, & Luo, N. N. (2014). Impact of aerosols and atmospheric particles on plant leaf proteins. Atmospheric Environment, 88, 115-122.
-
Yan, X., Shi, W.*, Zhao, W., & Luo, N. (2014). Estimation of atmospheric dust deposition on plant leaves based on spectral features. Spectroscopy Letters, 47(7), 536-542.
-
Yan, X., Shi, W.*, Zhao, W., & Luo, N. (2014). Estimation of protein content in plant leaves using spectral reflectance: a case study in Euonymus japonica. Analytical Letters, 47(3), 517-530.
-
Luo, N., Zhao, W., & Yan, X. (2014). Integrated aerosol optical thickness, gaseous pollutants and meteorological parameters to estimate ground PM2. 5 concentration. Fresenius Environmental Bulletin, 23(10 A), 2567-2577.
-
Luo, N., Zhao, W., & Yan, X. (2013).Study on inversion of dust-fall on plant leaves based on high spectral data. Spectroscopy and Spectral Analysis, 33: 2715-2720.
Refereed Journal Publications:
* Corresponding author
bottom of page